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Abstract

In this study, I examine the influence of urban canopy cover on gene flow between 15

white-footed mouse (Peromyscus leucopus) populations in New York City parklands.

Parks in the urban core are often highly fragmented, leading to rapid genetic

differentiation of relatively nonvagile species. However, a diverse array of ‘green’

spaces may provide dispersal corridors through ‘grey’ urban infrastructure. I identify

urban landscape features that promote genetic connectivity in an urban environment and

compare the success of two different landscape connectivity approaches at explaining

gene flow. Gene flow was associated with ‘effective distances’ between populations that

were calculated based on per cent tree canopy cover using two different approaches: (i)

isolation by effective distance (IED) that calculates the single best pathway to minimize

passage through high-resistance (i.e. low canopy cover) areas, and (ii) isolation by

resistance (IBR), an implementation of circuit theory that identifies all low-resistance

paths through the landscape. IBR, but not IED, models were significantly associated with

three measures of gene flow (Nm from FST, BayesAss+ and Migrate-n) after factoring out

the influence of isolation by distance using partial Mantel tests. Predicted corridors for

gene flow between city parks were largely narrow, linear parklands or vegetated spaces

that are not managed for wildlife, such as cemeteries and roadway medians. These results

have implications for understanding the impacts of urbanization trends on native

wildlife, as well as for urban reforestation efforts that aim to improve urban ecosystem

processes.
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Introduction

Dispersal and gene flow are crucial parameters for

understanding microevolution in fragmented popula-

tions (Keyghobadi 2007). Recording actual dispersal

events is notoriously difficult for many species, but

available data indicate that dispersal ability is correlated

with population genetic differentiation (Bohonak 1999).

Estimation of effective dispersal, that is, gene flow or
nce: Jason Munshi-South, Fax: +1 646 660 6201;

.munshi-south@baruch.cuny.edu
migration resulting from dispersal followed by success-

ful reproduction, has greatly improved because of

recent analytical advances in estimating both contempo-

rary and longer-term migration rates (Pearse & Crandall

2004; Waples & Gaggiotti 2006). Maintaining migration

between fragmented populations is a key goal of con-

servation genetics (Frankham 2010), as reduced or

absent migration is implicated in loss of biodiversity

(Fahrig 2003), population differentiation (Mech & Hal-

lett 2001) and reduced adaptive potential (Garant et al.

2007). Migration estimates from genetic markers can

elucidate the mechanisms of genetic differentiation
� 2012 Blackwell Publishing Ltd
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between animal groups and aid future efforts to restore

connectivity to fragmented landscapes.

Island or stepping-stone models and summary statis-

tics, such as FST, have typically been used to examine

the impacts of migration on neutral genetic variation

(Varvio et al. 1986; Gaines et al. 1997). Isolation-by-

distance (IBD) approaches have also provided consider-

able support for the hypotheses of reduced migration

and enhanced genetic differentiation with increasing

Euclidean distance between populations (Jenkins et al.

2010). However, real organisms and their genes rarely

follow the strict linear paths assumed by the above

models. The composition and spatial configuration of

landscape characteristics affect routes of movement,

resulting in ‘effective isolation’ between occupied

patches that may deviate from straight-line estimates

(Ricketts 2001). One current focus of the discipline of

landscape genetics is to understand how this effective

isolation influences the genetic structuring of popula-

tions (Manel et al. 2003; Holderegger & Wagner 2008).

Development of multiple approaches to infer the influ-

ence of landscape elements on population genetics has

contributed to the rapid adoption of landscape genetics

approaches in ecology and evolutionary biology

(Balkenhol et al. 2009b; Jaquiéry et al. 2011). Hundreds

of landscape genetics studies have now been published,

but a recent meta-analysis detected few general trends

in genetic responses to landscape characteristics (Storfer

et al. 2010). These findings indicate the importance of

studying many taxonomic groups across a range of

landscape heterogeneity.

Landscape genetic studies on mammals have tended

to focus on large-bodied and ⁄ or wide-ranging species

(Broquet et al. 2006; Epps et al. 2007; McRae & Beier

2007; Perez-Espona et al. 2008; Pease et al. 2009; Hap-

eman et al. 2011). The spatial scale, time since land-

scape features have changed, and life history traits of

the study taxa all influence landscape genetic results

(Anderson et al. 2010). The importance of different

landscape elements for the same species may also vary

between study sites (Short Bull et al. 2011). For these

reasons, previous results are unlikely to predict spatial

genetic structure in small mammals with limited dis-

persal abilities. Landscape data that are sufficiently

fine-grained to reflect the scale of migration distances,

and thorough genetic sampling from multiple popula-

tions in that landscape, will likely be necessary for

smaller taxa (Anderson et al. 2010).

Simulation studies predict that landscape genetic

approaches will be most successful when applied to

simple landscapes comprised of elements that differ

strongly in their ability to impede migration (Jaquiéry

et al. 2011). Urbanization produces landscapes with

these characteristics, often resulting in homogenization
� 2012 Blackwell Publishing Ltd
of biodiversity as a small number of ‘urban adapters’

thrive at the expense of urban-sensitive taxa (McKinney

2006). Urban habitat patches are typically small, frag-

mented and surrounded by a matrix of roads and

buildings that begins immediately outside the discrete

edges of the patch. This matrix is relatively imperme-

able to many small vertebrates, and multiple studies

have now reported substantial genetic differentiation

between isolated urban populations of native species

(Bjorklund et al. 2010; Delaney et al. 2010; Noël & Lapo-

inte 2010). Human commensals such as the Norway rat

(Rattus norvegicus) are exceptional in exhibiting moder-

ate gene flow through urban landscapes (Gardner-

Santana et al. 2009). However, city parks and private

gardens may form networks of green space that

promote limited connectivity for some native taxa

(Goddard et al. 2010). Given near-binary habitat distri-

butions and potential linear corridors comprised of arti-

ficial or semi-natural landscape elements (e.g. roadway

medians, Pećarević et al. 2010), landscape genetic rela-

tionships are likely to be found in urban environments.

However, no study to date has examined spatial associ-

ations between landcover and genetic connectivity in

the urban core.

In this study, I examine statistical associations

between urban tree canopy cover and multiple mea-

sures of genetic connectivity between white-footed mice

(Peromyscus leucopus) sampled from 15 populations in

New York City (NYC), USA. Previous analyses showed

that nearly all of these sites contained genetically dis-

tinct subpopulations with moderate to high genetic var-

iation, although some admixture was detected between

proximal areas (Munshi-South & Kharchenko 2010).

White-footed mice are found in nearly every forested

area in NYC that has been surveyed, but are replaced

by house mice (Mus musculus) and Norway rats in the

urban matrix (J. Munshi-South, unpublished data). Tree

canopy cover was thus chosen as the primary landscape

variable for this study because of its potential role in

determining the distribution of P. leucopus in the urban

core. Population densities of white-footed mice are typi-

cally much higher in fragmented vs. undisturbed envi-

ronments (Nupp & Swihart 1996; Krohne & Hoch 1999;

Rytwinski & Fahrig 2007), and elevated intraspecific

competition in these fragments contributes to higher

emigration rates (Anderson & Meikle 2010).

Given the apparent ecological success and genetic

variability of P. leucopus in urban forest fragments

(Munshi-South & Kharchenko 2010), it is likely that this

species has the ability for limited migration through the

urban core. Urban fragments in NYC are highly iso-

lated, but the ecological thresholds (if they exist)

beyond which connectivity breaks down are currently

unknown. Opportunistic trapping records at the edges
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of forest fragments in NYC indicate that white-footed

mice occupy or move through even the thinnest, mar-

ginal green spaces (i.e. unmowed fencerows, cemetery

edges and roadside vegetation). Breeding populations

have also been recorded in long, linear forested park-

lands that are only a few tens of metres wide (e.g.

Highbridge Park in NW Manhattan, J. Munshi-South,

unpublished data), suggesting that gene flow between

major park populations can occur across generations

rather than through direct dispersal. By comparing rela-

tive migration rates between forest fragments separated

by varying amounts and configurations of ‘green’ and

‘grey’ infrastructure, landscape genetics approaches can

identify the most likely features of the urban core that

promote migration. P. leucopus are nearly ubiquitous in

forest fragments in NYC, but less abundant sympatric

species such as the meadow vole (Microtus pennsylvani-

cus) or short-tailed shrew (Blarina brevicauda) are likely

to migrate along the same pathways (or may if the

green infrastructure was improved). White-footed mice

are also prey for a number of species in the northeast-

ern United States. Understanding the dynamics of

migration in the urban landscape can help inform man-

agement of urban predators, particularly raptors such

as the Eastern screech owl (Megascops asio), that have

been re-introduced and are actively monitored in NYC

(Nagy et al. in press).

Here, I use a data set of 18 microsatellite genotypes

to estimate both recent and longer-term migration rates

between white-footed mouse populations in NYC. Then,

I examine the correlation between these population

genetic measures and different spatial models of popu-

lation connectivity based on tree canopy cover in NYC.

Multiple connectivity models were generated by assign-

ing low resistance to sequentially lower percentages of

canopy cover to examine whether additional low-

resistance habitat increased the correlation between

canopy cover and migration.

Peromyscus leucopus individuals may disperse several

kilometres from capture sites (Maier 2002), but most

studies have not recorded average dispersal distances

greater than 500 m (Stickel 1968). Thus, IBD alone

may be sufficient to explain how the urban landscape

structures white-footed mouse populations in NYC:

migration rates should decrease with Euclidean dis-

tance between populations. If the composition of the

urban landscape plays a role in genetic structuring,

then white-footed mice should migrate along path-

ways of preferred, or at least sublethal, landscape

elements. The least-cost path, or ‘isolation-by-effective-

distance’ (IED), approach calculates the single best

path that will minimize accumulated costs as an ani-

mal moves through a hypothetical landscape resistance

surface (Sawyer et al. 2011). Although more biologi-
cally realistic than IBD, IED approaches still suffer

from the simplistic assumption of a single path

through the landscape (Rayfield et al. 2010). A recently

developed implementation of circuit theory, known as

isolation by resistance (IBR), models adjacent land-

scape cells as series of electrical resistors to calculate

an overall resistance distance between populations

(McRae 2006). The resistance distance is theoretically

related to random walk times through all possible

landscape paths and may outperform IBD and IED in

predicting gene flow and genetic differentiation

(McRae & Beier 2007).

In this study, I test the prediction that migration rates

between urban white-footed mouse populations are

associated with landscape connectivity models based on

the amount and configuration of tree canopy cover in

NYC. I use the estimated migration rates and connectiv-

ity maps to identify the most likely corridors of move-

ment through the urban core for this species.

Secondarily, I examine whether IBR and IED models

based on canopy cover will outperform IBD, and

whether IBR will outperform IED, at explaining genetic

differentiation and gene flow among urban white-footed

mouse populations. IBR and IED models may produce

spurious correlations if their effects are confounded

with each other or Euclidean distance, so I used partial

Mantel tests to identify the best models while control-

ling for alternative scenarios (Cushman & Landguth

2010). Finally, I test the hypothesis that recent migration

rates between urban populations using BayesAss+ will

be correlated with higher percentages of canopy cover

than longer-term migration estimates from FST-based

Nm or Migrate-n. Given that urbanization has likely

reduced connectivity between populations in NYC over

time, migration may have been partly shaped by path-

ways that are absent or degraded in the contemporary

landscape.
Methods

Study sites, sampling and population genetic data

I conducted trapping surveys at 15 sites in NYC

(Fig. 1) from June 2008 to October 2009 and collected

tail snips for genetic analysis from all unique individu-

als (see Table 1 for sample sizes). All 294 sampled indi-

viduals were then genotyped at 18 unlinked

microsatellite loci. These genotypes were previously

analysed to examine genetic differentiation between

urban populations, and Munshi-South & Kharchenko

(2010) provide full details of sampling and genotyping.

The genotypes and spatial coordinates for all study sites

are available on the Dryad digital repository (doi:

10.5061/dryad.7gh65757).
� 2012 Blackwell Publishing Ltd



Fig. 1 Fifteen white-footed mouse locations sampled in New

York City. The Bronx ⁄ Manhattan cluster is comprised of sites

1–7, and the Queens cluster of sites 8–15. 1. CP = Central Park,

2. HI = Hunter Island, 3. IP = Inwood Hill Park, 4. NYBG =

New York Botanical Garden, 5. OO = Southwestern Pelham

Bay Park, 6. VCN = Van Cortlandt Park north of Henry Hud-

son Parkway, 7. VCS = Van Cortlandt Park south of Henry

Hudson Parkway, 8. AP = Alley Pond Park, 9. CN = Cunning-

ham Park, 10. FM = Flushing Meadows—Willow Lake, 11.

FP = Forest Park, 12. FT = Fort Tilden, 13. JB = Jamaica Bay,

14. KP = Kissena Park, 15. RR = Ridgewood Reservoir—High-

land Park.
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For downstream landscape genetic analyses, study

sites were analysed as one of two geographically sepa-

rated clusters: (i) Bronx & Manhattan (Sites 1–7; Fig. 1),

(ii) Queens (Sites 8–15; Fig. 1). Previous analysis con-

firmed all 15 sites as unique evolutionary clusters

(Munshi-South & Kharchenko 2010). However, Queens

is separated from Manhattan and Bronx by the formida-

ble barriers of the East River and Long Island Sound,

and thus recent gene flow has likely been negligible

between the two population clusters. In contrast, Man-

hattan is separated from the Bronx at its northern tip

by the narrow Spuyten Duyvil Creek, and forested

parklands exist on both shores. This tidal channel was
� 2012 Blackwell Publishing Ltd
meandering, narrow and often very shallow during low

tides before being dredged and straightened as a ship-

ping canal from 1888 to 1895 (Horenstein 2007); today,

the shipping channel is approximately 120 m wide.

Although few data exist, Peromyscus spp. have been

observed swimming up to 233 m (reviewed in Schoener

& Schoener 1984). To reach Queens from either the

Bronx or Manhattan, however, would require longer

aquatic movements through strong currents. Addition-

ally, the Queens coastline across from the two other

landmasses is largely nonvegetated industrial or resi-

dential space rather than parklands (Fig. 1). The

assumption that Bronx and Manhattan populations are

much more likely to have historical connectivity than

either with Queens is also supported by previous

results. Although differences between populations

exceeded differences between landmasses in the earlier

study, an evolutionary cluster analysis with k = 6

received the second highest level of support after

k = 16. For k = 6, the Van Cortlandt (VCN and VCS in

Fig. 1) populations in the Bronx and the Inwood (IP)

population at the tip of Manhattan were part of the

same evolutionary cluster, indicating the greater likeli-

hood of connectivity between these two landmasses

(Fig. S1 in Supporting information, Munshi-South &

Kharchenko 2010).
Estimates of gene flow

To estimate population differentiation and migration, I

calculated pairwise linearized FST as (FST ⁄ [1)FST],

Table S1, Supporting information) and Nm as

([(1 ⁄ FST))1] ⁄ 4), between all possible pairs in the two

population clusters using GenAlex 6.4 (Peakall &

Smouse 2006). Statistical significance was assessed by

P-values calculated using 10 000 random permutations

of the data and a Bonferroni correction. This statistic is

a symmetric average of migration in both directions

between two populations and thus has no information

on directionality. Two other estimators of migration

below were calculated in each direction between each

pair of populations, and the migration estimates in each

direction were analysed separately to preserve the

directionality of migration. Nm from FST was included

in this study for comparative purposes with the

many past studies that have used approaches based on

F-statistics.

To estimate recent migration rates, I used the Bayes-

ian estimator implemented in BayesAss+ 1.3 (Wilson &

Rannala 2003). Migration rate estimates in BayesAss+

are based on the proportion of individuals in each

population sample that are assigned to other popula-

tions with high probability. The program is successful

at detecting migration based on individual migrant



Table 1 Euclidean geographic distances (kilometres; above diagonal) and Nm calculated from FST (Nm = [(1 ⁄ FST) ) 1] ⁄ 4; below diag-

onal) estimated between each pair of populations in the Bronx & Manhattan (top) and Queens (bottom)

1. CP 2. HI 3. IP 4. NYBG 5. OO 6. VCN 7. VCS

1. CP (N = 15) – 16.78 8.85 10.18 13.05 13.36 12.60

2. HI (27) 2.45 – 11.72 7.53 3.78 9.41 9.16

3. IP (20) 3.22 3.27 – 4.40 9.08 4.73 4.09

4. NYBG (33) 2.27 2.45 3.78 – 4.68 4.86 4.07

5. OO (14) 2.01 2.51 2.92 2.94 – 8.29 7.74

6. VCN (10) 2.59 2.23 3.57 3.24 3.03 – 0.83

7. VCS (14) 3.00 3.23 4.01 3.47 3.69 6.24 –

8. AP 9. CN 10. FM 11. FP 12. FT 13. JB 14. KP 15. RR

8. AP (N = 9) – 2.28 7.98 10.07 24.28 15.80 5.39 13.72

9. CN (25) 5.92 – 5.71 7.86 22.67 14.39 3.22 11.52

10. FM (30) 3.32 5.32 – 2.39 18.66 11.38 3.30 5.96

11. FP (11) 4.72 7.59 4.95 – 16.45 9.64 5.69 3.66

12. FT (18) 2.41 2.78 1.72 2.16 – 8.65 21.74 14.03

13. JB (11) 2.87 3.48 2.32 3.24 1.86 – 14.02 8.94

14. KP (24) 3.19 2.87 2.35 3.48 2.16 2.22 – 9.23

15. RR (33) 3.71 4.65 3.33 5.65 1.97 2.61 3.05 –

Sample sizes (N) appear next to each population in the first column.

1. CP, Central Park; 2. HI, Hunter Island; 3. IP, Inwood Hill Park; 4. NYBG, New York Botanical Garden; 5. OO, Southwestern

Pelham Bay Park; 6. VCN, Van Cortlandt Park north of Henry Hudson Parkway; 7. VCS, Van Cortlandt Park south of Henry.

Hudson Parkway; 8. AP, Alley Pond Park; 9. CN, Cunningham Park; 10. FM, Flushing Meadows—Willow Lake; 11. FP, Forest Park;

12. FT, Fort Tilden; 13. JB, Jamaica Bay; 14. KP, Kissena Park; 15. RR, Ridgewood Reservoir.
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ancestries within a few generations and relaxes some

equilibrium assumptions (e.g. Hardy–Weinberg but not

linkage equilibrium). A recent simulation study (Fau-

bet et al. 2007) indicated that BayesAss+ produces

accurate migration estimates when genetic differentia-

tion is not too low (FST ‡ 0.05), an assumption that

holds for population pairs in this study (Table S1,

Supporting information). Separate analyses were run

for the Bronx ⁄ Manhattan and Queens population clus-

ters using a burn-in of 1 000 000 steps of 5 000 000

total iterations, and a sampling frequency of 2000 iter-

ations. The default delta value of 0.15 was used for

allele frequency, migration rate and inbreeding. Here, I

report the migration rates calculated between each

population pair in each direction (Table 2), and the

corresponding 95% confidence intervals (Table S2,

Supporting information). BayesAss+ also reports the

95% confidence intervals expected for uninformative

data, and I used these data to assess the reliability of

the estimated migration rates. For seven populations,

uninformative data will produce 95% confidence inter-

vals for migration rates of 0–0.144, and 95%

confidence intervals for proportion of residents of

0.675–0.992. For eight populations, uninformative data

will produce 95% CIs for migration rates of 0–0.134,

and the same 95% CIs for residents as for seven popu-

lations.
I also used the Bayesian coalescent approach imple-

mented in Migrate-n to estimate migration rates

between populations (Beerli 2006). This method pro-

duces estimates of h (4Nel, where l = mutation rate)

and M (m ⁄ l, where m = migration rate) for microsat-

ellite data from n populations. As with Nm from FST,

the migration rates are an average over many genera-

tions back in time and assume that the system is in

migration–drift equilibrium. To estimate migration,

I ran five replicates for each population cluster in

Migrate-n using a Brownian motion mutation model

with constant mutation rates and starting parameters

based on FST calculations. An exponential prior

distribution (range = 0–100, mean = 50) was used to

estimate h, and a uniform prior distribution

(range = 0–100, mean = 50, delta = 10) was used for

M. The priors were chosen based on the performance

of multiple trial runs with different prior values. Each

of the five replicate runs visited a total of 5 000 000

parameter values including a 500 000 burn-in period,

and sampled the parameter value every 100 iterations.

I used the median value of M from each run’s poster-

ior distribution to calculate an overall mean M for

each population pair in each direction. Here, I report

these mean migration rates (Table 3) and the 0.025

and 0.975 posterior distribution values (Table S3,

Supporting information) as 95% confidence interval
� 2012 Blackwell Publishing Ltd



Table 2 Recent migration rates estimated between each pair of populations in the Bronx & Manhattan (top) and Queens (bottom)

using BayesAss+ 1.3

1. CP 2. HI 3. IP 4. NYBG 5. OO 6. VCN 7. VCS

1. CP 0.98 0.002 0.006 0.002 0.004 0.015 0.006

2. HI 0.003 0.988 0.006 0.002 0.006 0.014 0.01

3. IP 0.003 0.002 0.974 0.002 0.004 0.124 0.02

4. NYBG 0.003 0.002 0.003 0.99 0.004 0.015 0.007

5. OO 0.003 0.002 0.004 0.001 0.975 0.015 0.006

6. VCN 0.003 0.002 0.003 0.002 0.004 0.695 0.006

7. VCS 0.003 0.002 0.004 0.002 0.004 0.122 0.944

8. AP 9. CN 10. FM 11. FP 12. FT 13. JB 14. KP 15. RR

8. AP 0.696 0.002 0.001 0.011 0.002 0.011 0.002 0.004

9. CN 0.226 0.985 0.002 0.077 0.002 0.027 0.004 0.004

10. FM 0.013 0.003 0.99 0.012 0.002 0.011 0.005 0.004

11. FP 0.014 0.002 0.002 0.693 0.002 0.011 0.003 0.004

12. FT 0.013 0.002 0.001 0.011 0.984 0.226 0.003 0.004

13. JB 0.012 0.002 0.001 0.01 0.002 0.693 0.003 0.004

14. KP 0.013 0.002 0.001 0.173 0.002 0.011 0.978 0.301

15. RR 0.013 0.002 0.001 0.012 0.002 0.01 0.003 0.676

Values above the diagonal (top matrix) are migration rates from the populations in the horizontal row into the populations in the

vertical column, and values below the diagonal (bottom matrix) are migration rates from the populations in the vertical column into

the populations in the horizontal row. The diagonal values in bold are the percentages of resident individuals in each population per

generation.

1. CP, Central Park; 2. HI, Hunter Island; 3. IP, Inwood Hill Park; 4. NYBG, New York Botanical Garden; 5. OO, Southwestern

Pelham Bay Park; 6. VCN, Van Cortlandt Park north of Henry Hudson Parkway; 7. VCS, Van Cortlandt Park south of Henry.

Hudson Parkway; 8. AP, Alley Pond Park; 9. CN, Cunningham Park; 10. FM, Flushing Meadows—Willow Lake; 11. FP, Forest Park;

12. FT, Fort Tilden; 13. JB, Jamaica Bay; 14. KP, Kissena Park; 15. RR, Ridgewood Reservoir.
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estimates (Beerli & Felsenstein 2001) of the median

for each of the five runs.
Calculation of Euclidean, effective and resistance
distances

Pairwise Euclidean distances between populations were

calculated for each population cluster using the Land-

scape Genetics ArcToolbox (Etherington 2011) in ArcGis

9.3 (ESRI). Calculation of effective and resistance dis-

tances required spatial data sets on landcover in NYC

and hypotheses about the relative permeability of land-

scape elements to migration between white-footed

mouse populations. I used percentage tree canopy cover

as the primary variable for examining influences of the

landscape on genetic structure because of its likely role

in influencing the distribution of white-footed mice and

other forest species in NYC. Raster images of per cent

tree canopy at 30-m resolution (Fig. 1) were down-

loaded from the 2001 National Land Cover Database

(Homer et al. 2004), and the continuous percentages

were lumped into categorical bins of 10% canopy cover

using ArcGIS (e.g. 0–9%, 10–19%; Table S4, Supporting

information). The spatial extent of the data used for this
� 2012 Blackwell Publishing Ltd
study included the entire land area of NYC (excluding

Staten Island), Westchester Co., NY, north of the Bronx,

and Nassau Co., NY, east of Queens. Areas west and

south of NYC were excluded because of the Hudson

River and oceanic barriers to migration in these direc-

tions.

To examine associations between gene flow and the

spatial configuration of low-resistance habitat, I recoded

each 30-m cell of the canopy cover data set with resis-

tance values of either 1 = no or low resistance, or

10 000 = high, quasi-barrier resistance. Nine different

resistance grids were created to examine the effect of

lowering the resistance for sequentially lower levels of

tree canopy cover (Table S4, Supporting information).

In other words, in the first scenario, only 30-m cells

with 90% or greater canopy cover were coded as low

resistance, but in the ninth scenario, all cells with 10%

or greater canopy cover were coded as low resistance.

The alternative hypothesis that migration will decrease

gradually with less canopy cover could not be assessed

using these resistance scenarios. However, given the

complete absence of white-footed mice outside vege-

tated areas in NYC, I predicted that gene-flow measures

would correlate most strongly with scenarios of abrupt



Table 3 Unidirectional migration rates, M (m ⁄ l), estimated between each pair of populations in the Bronx & Manhattan (top) and

Queens (bottom) using Migrate-n 3.2.1

1. CP 2. HI 3. IP 4. NYBG 5. OO 6. VCN 7. VCS

1. CP – 2.79 3.97 2.25 5.90 7.90 6.20

2. HI 5.49 – 5.46 2.95 6.53 10.05 7.34

3. IP 6.97 3.07 – 2.31 8.14 9.69 10.59

4. NYBG 7.76 4.37 4.81 – 7.75 8.57 6.87

5. OO 4.57 2.77 4.03 2.26 – 8.38 7.59

6. VCN 6.07 2.80 4.53 2.27 5.31 – 5.12

7. VCS 4.59 3.39 3.66 2.33 5.62 8.70 –

8. AP 9. CN 10. FM 11. FP 12. FT 13. JB 14. KP 15. RR

8. AP – 2.86 2.47 4.98 3.32 7.14 2.97 2.43

9. CN 10.41 – 3.11 9.57 5.66 9.53 4.43 2.70

10. FM 7.40 4.06 – 5.83 4.86 5.82 3.82 2.83

11. FP 9.01 3.18 2.46 – 4.41 4.74 2.69 2.21

12. FT 7.70 3.15 2.74 5.18 – 8.14 3.11 2.40

13. JB 6.77 3.22 2.30 6.57 4.71 – 3.02 2.30

14. KP 7.33 2.95 2.62 7.03 5.73 6.88 – 2.65

15. RR 7.03 4.22 3.14 8.42 4.87 9.87 3.97 –

Values presented are the average median M calculated from five independent runs of Migrate-n. Values above the diagonal (top

matrix) are migration rates from the populations in the horizontal row into the populations in the vertical column, and values below

the diagonal (bottom matrix) are migration rates from the populations in the vertical column into the populations in the horizontal

row.

1. CP, Central Park; 2. HI, Hunter Island; 3. IP, Inwood Hill Park; 4. NYBG, New York Botanical Garden; 5. OO, Southwestern

Pelham Bay Park; 6. VCN, Van Cortlandt Park north of Henry Hudson Parkway; 7. VCS, Van Cortlandt Park south of Henry.

Hudson Parkway; 8. AP, Alley Pond Park; 9. CN, Cunningham Park; 10. FM, Flushing Meadows—Willow Lake; 11. FP, Forest Park;

12. FT, Fort Tilden; 13. JB, Jamaica Bay; 14. KP, Kissena Park; 15. RR, Ridgewood Reservoir.
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disruption of migration after canopy cover reaches a

critical low level. These nine resistance grids are avail-

able on Dryad (doi: 10.5061/dryad.7gh65757).

Effective distances between populations were calcu-

lated under all nine canopy resistance scenarios using

the ‘least-cost paths’ tool in the Landscape Genetics

ArcToolbox. This analysis outputs a pairwise matrix of

the length of the single best path between populations

that minimizes the cumulative resistance cost (e.g.

passes through the fewest cells with resis-

tance = 10 000), as well as a polyline file of the path

itself. Pairwise resistance distances between populations

for all nine canopy scenarios were calculated using Cir-

cuitscape 3.5 (Shah & McRae 2008). In these analyses,

populations were treated as focal points consisting of a

single cell, and adjacent cells were connected to eight

neighbours by average resistances. This analysis pro-

ceeds by designating one focal population as an electri-

cal source and the receiving population as an electrical

ground. Each landscape cell is assumed to be connected

to adjacent cells by electrical resistors, each of which

impedes current flow to different degrees depending on

the resistance values set by the researcher. Circuitscape

then calculates a pairwise matrix of the effective

resistance distances between populations and can also
generate a cumulative ‘current map’ portraying areas

where resistance to gene flow is relatively low or high.

The latter analysis is computationally intensive, so cur-

rent maps were generated post hoc only for resistance

distances that were highly correlated with gene-flow

estimates. These analyses are biologically relevant to

dispersal and gene flow because resistance distances are

highly correlated with random walk times through

landscapes.
Testing IBD, IED and IBR models of landscape
influence on gene flow

Pairwise measures of Euclidean, effective and resistance

distances were ln-transformed to improve linearity for

tests of statistical association with migration estimates.

To test IBD models, I used the ‘ecodist’ package (Goslee

& Urban 2007) in R (R Development Core Team 2008)

to run simple Mantel tests of the association between

pairwise matrices of the three gene-flow estimates and

ln Euclidean distance for the two population clusters.

Statistical significance of all Mantel tests was assessed

using 10 000 randomizations of the matrix values, and

95% confidence intervals for the Mantel correlation

coefficient r were estimated using 10 000 bootstrap
� 2012 Blackwell Publishing Ltd
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iterations that resampled 90% of the data. Statistical

associations between all nine IED models (ln effective

distance) and migration estimated from Nm, BayesAss+

and Migrate-n were also calculated using simple Mantel

tests in ‘ecodist’ for the two population clusters. These

analyses were repeated for all nine IBR models. To pre-

serve the directional information in the BayesAss+ and

Migrate-n migration rates, I ran separate Mantel tests

on both the top and bottom halves of the pairwise

matrices (Tables 2–3).

If canopy cover with low resistance to migration

occurs linearly in the NYC landscape, then IED and IBR

models may be highly correlated with gene flow owing

to the effects of IBD (Cushman & Landguth 2010). To

control for the confounding influence of IBD, I calcu-

lated partial Mantel tests in a stepwise modelling

framework in ‘ecodist’. Partial Mantel tests examined

the association between one pairwise matrix of effective

distances and one pairwise matrix of gene flow while

controlling for the effects of a pairwise matrix of Euclid-

ean distances between populations. For IBR calcula-

tions, I calculated ‘flat’ resistance distances on a

uniform landscape of no resistance in Circuitscape that

was used in place of the Euclidean distance matrix.

Euclidean distances and these flat resistance distances

were highly correlated (Mantel r = 0.99, P < 0.0001). As

above, partial Mantel correlations and confidence inter-

vals were estimated for all possible combinations of the

nine IED ⁄ IBR models and the three measures of gene

flow to determine which IBR and IED models explained

genetic structure better than IBD. In cases where both

IED and IBR models significantly explained gene flow

after controlling for IBD, I ran an additional partial

Mantel test to choose between the IED and IBR models.
Results

Estimates of population differentiation and gene flow

All linearized pairwise FST values were statistically sig-

nificant (P < 0.0001; Table S1, Supporting information)
Table 4 Results of simple Mantel tests for isolation by distance (IBD

wise measures of genetic connectivity

Genetic statistic Bronx &

Nm from FST r = )0.8

Recent migration (bottom matrix—Table 2) )0.723 (

Recent migration (top matrix—Table 2) )0.14 ()
Historical migration (bottom matrix—Table 3) 0.026 ()
Historical migration (top matrix—Table 3) )0.12 ()

*P £ 0.05; **P £ 0.001. Values in bold are statistically significant.

95% confidence intervals estimated using 10 000 bootstrap replicates

Mantel correlation coefficients.

� 2012 Blackwell Publishing Ltd
between white-footed mouse populations in NYC. Line-

arized FST ranged from 0.04 to 0.125 among population

pairs in Bronx and Manhattan, and from 0.033 to 0.145

among Queens pairs (Table S1, Supporting informa-

tion). The Nm values calculated from FST were all

greater than zero, ranging from 1.7 to 7.6 (Table 1).

Recent migration rates estimated in BayesAss+ were

very low for most population pairs (Table 2), and these

low values typically had 95% confidence intervals with

a lower bound near zero (Table S2, Supporting infor-

mation). Nearly all of the estimated 95% confidence

intervals were much narrower than those expected for

uninformative data (see Methods above), indicating that

the estimates reported here were produced from infor-

mative data. The median values of migration rates M

estimated in Migrate-n were uniformly greater than

zero, ranging from 2.31 to 10.59 in Bronx and Manhat-

tan and from 2.21 to 10.41 in Queens (Table 3). How-

ever, a moderate number of these values also had 95%

confidence intervals with lower bounds at or near zero

(Table S3, Supporting information).
Simple Mantel tests of IBD, IED and IBR and gene-
flow estimates

IBD significantly explained migration estimated from

Nm and BayesAss+, but not Migrate-n, in both Bronx

and Manhattan and Queens (Table 4). However, the

95% confidence intervals for migration from BayesAss+

overlapped zero, indicating that the significant result

may have been driven by one or a few values. IBD

explained Nm patterns in Bronx and Manhattan better

than among Queens populations.

All nine IED models were significantly associated

with Nm and the bottom matrix of BayesAss+ estimates,

but not the top matrix from BayesAss+ or either matrix

from Migrate-n, in both population clusters (Table S5,

Supporting information). All nine IBR models were

significantly associated with Nm and the bottom matrix

from BayesAss+ in both population clusters. IBR

models were not significantly correlated with Migrate-n
) between ln-transformed Euclidean distances and three pair-

Manhattan Queens

06 ()0.944 to )0.371)** )0.499 ()0.685 to )0.277)*

)0.875–0.484)* )0.396 ()0.605–0.027)*

0.434–0.091) 0.005 ()0.112–0.167)

0.42–0.61) 0.042 ()0.236–0.291)

0.373–0.15) 0.153 (0.007–0.31)

in the ‘ecodist’ package in R appear in parentheses next to
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estimates in Bronx and Manhattan, but eight of nine

IBR models were significantly associated with the bot-

tom matrix from Migrate-n in Queens (Table S5, Sup-

porting information).
Identification of best landscape genetic models using
partial Mantel tests

After controlling for Euclidean distance in partial Mantel

tests, three IED models and seven IBR models for Bronx

and Manhattan were significantly correlated with Nm

(Fig. 2a). One IED model and three IBR models were sig-

nificantly associated with Nm in Queens (Fig. 3a). Seven

IBR models were correlated (partial Mantel r £ )0.9) with

the bottom matrix from BayesAss+ in Bronx & Manhat-

tan after controlling for IBD and exhibited very narrow

95% confidence intervals (Fig. 2b). However, no models

were correlated with the top matrix from BayesAss+ in

either population cluster (Figs 2c and 3c). All nine IBR

and three IED models were correlated with the bottom

matrix from BayesAss+ in Queens independent of IBD

(Fig. 3b). Seven IBR models in Bronx & Manhattan
(a)

(b)

(d)

(c)

(e)
(Fig. 2d) and eight IBR models in Queens (Fig. 3d) were

significantly associated with the bottom matrix from

Migrate-n after controlling for IBD. One IED model in

Bronx and Manhattan (Fig. 2e), and no models in

Queens (Fig. 3e), was significantly associated with the

top matrix from Migrate-n. None of the 95% confidence

intervals calculated from bootstrapping the statistically

significant partial Mantel correlation coefficients over-

lapped zero, indicating that the significant tests were not

driven by high-leverage, outlier values.

In Bronx and Manhattan, an IED model that assigned

high resistance to areas with <30% canopy cover best

explained Nm (partial Mantel r = 0.79, P < 0.001;

Fig. 4a), whereas an IBR model of high resistance for

<70% canopy was most highly correlated with Baye-

sAss+ (r = )0.94, P < 0.001) and Migrate-n (r = )0.54,

P < 0.01; Fig. 4b) estimates. Results from IBR models

that assigned low resistance to 70% or less canopy cover

(scenarios 3–9 in Table S4, Supporting information)

produced nearly indistinguishable results for the

bottom matrices from BayesAss+ and Migrate-n

(Fig. 2b,d).
Fig. 2 Partial Mantel correlation coeffi-

cients calculated while controlling for

isolation by distance among Bronx and

Manhattan populations using (a) Nm

calculated from FST in Table 1, (b) the

bottom matrix of recent migration rates

from BayesAss+ in Table 2, (c) the top

matrix of recent migration rates from

BayesAss+ in Table 2, (d) the bottom

matrix of migration rates from Migrate-

n in Table 3 and (e) the top matrix of

migration rates from Migrate-n in

Table 3. White bars represent isolation-

by-effective-distance models, and grey

bars represent isolation-by-resistance

models. Error bars are the 95% confi-

dence intervals from 10 000 bootstrap

replicates of the partial Mantel correla-

tion coefficients. *P < 0.05, **P < 0.01.

� 2012 Blackwell Publishing Ltd
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(b)

(d)

(c)

(e)

Fig. 3 Partial Mantel correlation coeffi-

cients calculated while controlling for

isolation by distance among Queens

populations using (a) Nm calculated

from FST in Table 1, (b) the bottom

matrix of recent migration rates from

BayesAss+ in Table 2, (c) the top matrix

of recent migration rates from Baye-

sAss+ in Table 2, (d) the bottom matrix

of migration rates from Migrate-n in

Table 3, and (e) the top matrix of

migration rates from Migrate-n in

Table 3. White bars represent isolation-

by-effective-distance models, and grey

bars represent isolation-by-resistance

models. Error bars are the 95% confi-

dence intervals from 10 000 bootstrap

replicates of the partial Mantel correla-

tion coefficients. *P < 0.05, **P < 0.01,

***P < 0.001.
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In Queens, the bottom matrix from BayesAss+ was

correlated with both IED and IBR models: the former

with high resistance for <90% forest cover (r = 0.55,

P < 0.01; Fig. 5a), and the latter with high resistance for

<10% forest cover (r = )0.72, P < 0.0001; Fig. 5d). Nm

was most strongly associated with an IBR model of

high resistance for <90% canopy cover in Queens

(r = 0.63, P < 0.05; Fig. 5b). An IBR model of high resis-

tance for <70% canopy cover was most strongly associ-

ated with the bottom matrix from Migrate-n in Queens

(r = )0.59, P < 0.05; Fig. 5c). However, results from IBR

models that assigned low resistance to 80% or less can-

opy cover (scenarios 2–9 in Table S4, Supporting infor-

mation) produced similar results for the bottom

matrices from BayesAss+ and Migrate-n (Fig. 3b,d). As

IBR models assigned low resistance to lower and lower

percentages of canopy cover, the overall area of connec-

tivity along Queens’ central corridor of parklands

roughly stayed the same (Fig. 5b–d). However, many

more discrete paths of high connectivity were estimated

for the lowest-resistance models (Fig. 5d).
� 2012 Blackwell Publishing Ltd
IED and IBR models were both successful at explain-

ing patterns of Nm in the two population clusters after

controlling for IBD (Figs 2a and 3a). In the Bronx and

Manhattan, the best IBR model (Scenario 4) was still

highly correlated with Nm (partial Mantel r = )0.509,

P < 0.05; 95% CI = )0.652 to )0.366) after controlling

for the best IED model (Scenario 7). However, the best

IED model explained nearly the same amount of varia-

tion in Nm after controlling for the best IBR model

(r = )0.546, P < 0.05, 95% CI = )0.639 to )0.445). In

Queens, the best IBR model (Scenario 1) was still highly

correlated with Nm (partial Mantel r = )0.718, P < 0.05;

95% CI = )0.822 to )0.638) after controlling for the best

IED model (Scenario 4). However, the best IED model

explained almost no variation in BayesAss+ estimates

after controlling for the best IBR model (r = )0.076,

P = 0.39, 95% CI = )0.501–0.32), indicating that IBR

was the superior model.

IED and IBR models were both successful at explain-

ing the bottom matrix from BayesAss+ in Queens after

controlling for IBD (Fig. 3b), but only IBR models were



(a)

(b)

Fig. 4 Landscape models with highest partial Mantel r correla-

tion coefficients for Bronx and Manhattan populations of

white-footed mice: (a) isolation-by-effective-distance model

(IED; based on low resistance for 30% or more canopy cover)

that was most strongly correlated with Nm from FST and (b)

isolation-by-resistance model (IBR; based on low resistance for

70% or more canopy cover) that was most strongly correlated

with both recent and longer-term migration rates.
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successful in the Bronx and Manhattan (Fig. 2b). The

best IBR model (Scenario 9) in Queens was still highly

correlated with BayesAss+ estimates (partial Mantel

r = )0.73, P < 0.0001; 95% CI = )0.94 to )0.375) after

controlling for the best IED model (Scenario 1). How-

ever, the best IED model explained almost no variation

in BayesAss+ estimates after controlling for the best IBR
model (r = 0.07, P = 0.39, 95% CI = )0.036–0.345), indi-

cating that IBR was the superior model.
Urban landscape features identified as low-resistance
corridors for migration

The best IBR and IED models both estimated that

migration occurs through cemeteries or along vegetated

medians of automobile parkways in the central Bronx,

and through corridors of forest cover in Westchester

Co. north of the Bronx (Fig. 4). The automobile park-

ways appear as very linear elements that converge at

the New York Botanical Garden (Site 4; NYBG) in the

circuit map. The migration rate from Van Cortlandt

Park (Site 6; VCN) in NW Bronx to Inwood Hill Park at

the tip of Manhattan (Site 3; IP) was one of the highest

BayesAss+ estimates (Table 2). Migration between these

parks was largely estimated as occurring through a resi-

dential area with high tree canopy cover east of Van

Cortlandt Park, and a narrow, forested park on the wes-

tern coast of the Bronx (Riverdale Park; Fig. 4). The

highest migration rates estimated by Nm and Migrate-n

(Tables 1 and 3) were from Van Cortlandt Park into the

other Bronx and Manhattan populations. Van Cortlandt

Park has a larger forested area than the other parks,

and large swaths of connectivity that emanate outwards

in three of four directions (Fig. 4). Only the north-cen-

tral Bronx was largely devoid of any predicted areas of

low-resistance habitat (Fig. 4). The New York Botanical

Garden (Site 4; NYBG) and Hunters Island (Site 2; HI),

the central-most and northeastern-most parks in the

Bronx, respectively, generally exhibited the lowest

migration rates (Tables 1–3).

Estimated paths through Manhattan were very nar-

row, forested city parks on both the western and east-

ern coasts (Fig. 4). The northwestern coastal park (Fort

Tryon) is largely contiguous with one of our study sites

(IP, no. 3 in Fig. 1), although not coterminous with Riv-

erside Park further south. The only clear trend in

migration rates for Manhattan was that Inwood Park

(Site 3; IP), situated in much greater proximity to the

Bronx parks, generally exhibited higher migration rates

in both directions than Central Park (Site 1; CP;

Tables 1–3).

Most of the Queens Parks were distributed along the

linear terminal moraine from the last glacial retreat. The

landscape models predicted low to moderate connectiv-

ity along the moraine, with relative isolation for the two

populations south of the moraine (Fig. 5). The highest

migration rates were estimated between the two east-

ern-most parks, Alley Pond (Site 8; AP) and Cunning-

ham (Site 9; CN). The circuit maps indicate a predicted

forested corridor appearing as a thin, dark line (Fig. 5).

Migration among other sites on the moraine was
� 2012 Blackwell Publishing Ltd
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Fig. 5 Landscape models with highest partial Mantel r correlation coefficients for Queens populations of white-footed mice: (a) isola-

tion-by-effective-distance model (IED; based on low resistance for 90% or more canopy cover) that was most strongly correlated with

recent migration rates from BayesAss+ and (b–d) isolation-by-resistance models (IBR; based on low resistance for a minimum of

90%, 70% or 10% canopy cover, respectively) that were most strongly correlated with Nm, Migrate-n and BayesAss+ migration rates,

respectively.
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similarly modest, with the exception of Flushing Mead-

ows—Willow Lake (Site 10; FM) and Ridgewood

Reservoir (Site 15; RR) that exhibited generally lower

rates (Tables 1–3). Although predicted paths of connec-

tivity occur around these two sites (Fig. 5), the parks

are ringed by highways.
� 2012 Blackwell Publishing Ltd
Discussion

Urban infrastructure, connectivity models and gene flow

Connectivity models based on percentage canopy cover

in NYC explained significantly more variation in gene
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flow among white-footed mouse populations than isola-

tion-by-distance (IBD) models. Significant IBD patterns

were detected in NYC, likely due to relatively rare

long-distance migration by Peromyscus leucopus (Stickel

1968). However, landscape-free IBD effects were not

sufficiently strong to mask the influence of the spatial

orientation of vegetation on white-footed mouse migra-

tion in NYC. Tree canopy cover models were consis-

tently successful across three different measures of gene

flow and two population clusters on isolated landmas-

ses. Confirmation of the importance of canopy cover in

two separate urban areas of NYC increases confidence

in the results reported here, as species responses to

landscape elements may differ between study sites

(Short Bull et al. 2011).

The connectivity models that successfully identified

pathways of migration between white-footed mouse

populations in NYC included parklands not trapped for

white-footed mice during this study, as well as mar-

ginal lands with no previous designation as wildlife

areas, such as roadsides, cemeteries and residential

areas. Although not sampled for genetic analysis,

P. leucopus have been trapped recently in the eastern

coastal Highbridge Park (J. Munshi-South, unpublished

data) that appears as a migration pathway in Manhat-

tan for both the IED and IBR analyses (Fig. 4). Close

examination of connectivity between population pairs

with relatively high migration rates revealed likely cor-

ridors of forest cover, such as between Alley Pond and

Cunningham Parks in Queens. This corridor was the

Long Island Motor Parkway from 1908 to 1938, after

which time the roadway was decommissioned and con-

verted to a bicycle ⁄ pedestrian path lined with second-

ary forest vegetation on both sides These pathways of

migration indicate that white-footed mice can maintain

limited connectivity between populations, even in one

of the most urbanized locations in the world.

Many pairs of parks exhibited low migration rates

despite several predicted pathways between them (i.e.

Flushing Meadows—Willow Lake and Ridgewood Res-

ervoir in Queens). The results presented here could be

applied to reforestation or other urban restoration

efforts that promote connectivity between green areas.

NYC and many other municipal areas have recently

undertaken large-scale tree-planting programs (e.g. Mil-

lionTreesNYC), although these efforts often lack a priori

biological goals or rationale (Lu et al. 2010; McPhearson

et al. 2011). Tree-planting or other restoration efforts

would likely meet with greater success at supporting

biodiversity and other ecosystem services by focusing

on expanding or connecting areas that already provide

ecological benefits such as connectivity. Integrating

landscape ecology information from multiple species

with efforts to promote appropriate stewardship and
improvement of heterogeneous semi-natural areas

across appropriate scales for urban conservation should

be a major focus of future research (Goddard et al.

2010). Abundant, flexible species such as white-footed

mice play important roles as both primary consumers

and prey in urban forests and are often more abundant

in disturbed vs. relatively pristine areas (Rytwinski &

Fahrig 2007). The parameters established for gene flow

and ecological connectivity of white-footed mouse pop-

ulations likely do not meet thresholds for connectivity

of other species, but may represent a starting point for

urban management.

Human population density, urbanization and species

richness are positively correlated in North America

(Luck et al. 2004), indicating that cities and surrounding

areas will be necessary components of biodiversity con-

servation efforts (Miller & Hobbs 2002; Sanderson &

Huron 2011). Urban habitat patches are typically small

and highly fragmented, but still maintain a high per-

centage of regional species richness (Croci et al. 2008);

beta diversity may be especially high owing to hetero-

geneity in habitat quality and type between urban

patches (Breuste et al. 2008). Few previous studies have

identified urban landscape variables that powerfully

predict important ecological or evolutionary processes

between populations of a native species in urban habi-

tat patches (Lada et al. 2008). A few studies have found

that natural factors are more important than urbaniza-

tion for explaining patterns of genetic structure or gene

flow (Leidner & Haddad 2010; Quéméré et al. 2010).

However, some other studies and the results found here

indicate that vegetation cover or other variables (e.g.

road density) are likely influencing the microevolution-

ary dynamics of wildlife in urban habitat fragments

(Palumbi 2001; Balkenhol & Waits 2009; Simmons et al.

2010). Urban landscape genetics of multiple taxa with

contrasting biology will greatly improve our under-

standing of the impacts of urbanization on native

wildlife.

Comparisons of small mammal migration in multiple

cities would provide an important test of urban canopy

cover as a general proxy for vegetation-mediated gene

flow. This study examined two clusters of populations

on relatively isolated landmasses, but both clusters

were located in NYC and subject to similar urbanization

pressures. NYC may prove to be unique among large

cities in eastern North America because of its extensive

vegetation cover and replicated series of small, isolated

parks in relative proximity on each of several different

landmasses. Other cities in the native range of P. leuc-

opus (e.g. Baltimore, Chicago and Philadelphia) tend to

have less overall vegetation cover (The City of New

York 2007) or are dominated by relatively few urban

parks that are larger and considerably more connected
� 2012 Blackwell Publishing Ltd
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to surrounding protected areas by wide habitat corri-

dors (e.g. Boston, Washington, D.C.). Alternatively, dif-

ferences in the importance of canopy cover between

NYC and other cities may be quantitative rather than

qualitative, that is, other cities simply have higher gene

flow facilitated by larger swaths of habitat through the

urban core.

Urban landscape genetics also has an important role

to play in elucidating the epidemiology of zoonotic dis-

ease in human population centres. Understanding how

landscapes influence the genetic structure of parasites

and pathogens directly, or through interactions between

the landscape genetics of hosts and their diseases, is an

important priority for urban ecologists and evolutionary

biologists (Blanchong et al. 2008; Archie et al. 2009;

Rees et al. 2009; Biek & Real 2010). White-footed mice

are important hosts of the arthropod vectors of Lyme

disease (Borrelia burgdorferi), babesiosis (Babesia microti)

and other pathogens. However, it is currently unknown

whether the spatial distribution of the vector (black-

legged ticks, Ixodes scapularis) or pathogens are

influenced by urban vegetation in the same fashion as

white-footed mouse migration.
Relative success of connectivity models at explaining
genetic patterns

For all but one statistic at one study site (Nm in Bronx

& Manhattan), isolation-by-resistance (IBR) outper-

formed isolation-by-effective-distance (IED) models

after factoring out IBD. The IED, or least-cost path,

approach has been the most popular method for model-

ling connectivity between populations, but the calcula-

tion of one ‘best’ route for animal movement or gene

flow through a particular set of landscape resistance

values has limited utility (Sawyer et al. 2011). IBR has

previously been shown to outperform IED because its

theoretical foundations are more biologically realistic

(i.e. the association between random walk times and

resistance distances). IBR also accounts for heteroge-

neous distributions of habitat rather than assuming lin-

ear movements across continuous swaths of high-

resistance landscape and effectively models multiple

pathways of variable widths (McRae & Beier 2007).

Despite the advantages of IBR and the attention it has

received in landscape genetics reviews (Balkenhol et al.

2009a; Guillot et al. 2009; Storfer et al. 2010), relatively

few published studies to date have included IBR analy-

ses. Most IBR applications have analysed broad regional

patterns (McRae & Beier 2007; Lee-Yaw et al. 2009; Row

et al. 2010), although the results of this study indicate

that IBR can successfully predict gene flow over fine-

grained scales. Zellmer & Knowles (2009) previously

demonstrated the success of IBR at explaining genetic
� 2012 Blackwell Publishing Ltd
divergence between wood frog (Rana sylvatica) popula-

tions using the same grain and similar landscape extent

as this study. The success of IBR at fine scales is impor-

tant to establish because landscape genetics is most suc-

cessful at identifying important landscape factors when

the grain of analysis is smaller than average home

ranges or lifetime movements (Anderson et al. 2010).

One caveat is that the IBR approach assumes that the

populations are continuous and gene flow could occur

at any node. The populations in urban parks sampled

here likely meet these criteria, but the IBR approach

may not be suitable for every study system.

The nine resistance scenarios examined in this study

assigned low-resistance values to consecutively lower

percentages of canopy cover. Nearly all nine scenarios

significantly explained variation in BayesAss+ and

Migrate-n migration rates after factoring out IBD, with

the exception of the most stringent models that

assigned high resistance to all vegetated cells with less

than 70–90% canopy cover (Figs 2b,d and 3b,d).

Depending on the gene-flow metric and study site, the

amount of variation explained in migration rates

increased dramatically after 60–80% canopy cover

became available as low-resistance habitat. These results

demonstrate that a single, continuously distributed

landscape element can produce powerful models for

predicting contemporary gene flow among wild popula-

tions in urban environments.
Limitations of population genetic estimates

The bottom matrix of migration rates from BayesAss+

and Migrate-n were nearly equally associated with simi-

lar IBR models. The top matrix of migration rates did

not exhibit IBD and was not significantly associated

with any connectivity models based on canopy cover.

This discrepancy indicates that immigration and emi-

gration are not symmetric for the populations examined

in this study (Tables 1–3). The causal factors for

unequal migration into and out of populations in NYC

are unknown. However, a recent analysis of migration

rates in Peromyscus leucopus that also used Migrate-n

found that emigration rates were negatively associated

with the size of patches occupied by populations

(Anderson & Meikle 2010). High reproductive rates in

small patches could provide greater incentive to dis-

perse out of the patch. I did not examine the influence

of population density, patch size or reproductive rates,

but these factors could partially explain asymmetric

migration in NYC.

Surprisingly, IED and IBR models were nearly as

strongly associated with Nm as with the migration rates

from BayesAss+ and Migrate-n. Nm calculated from FST

is confounded with effective population size and
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reflects average, symmetric migration in both directions

between populations, in contrast to the Migrate-n and

BayesAss+ estimates that were migration in one direc-

tion between populations. Calculating Nm from FST is

fraught with error (Whitlock & McCauley 1999) because

FST-based migration typically assumes that populations

have equal migration rates, random migration between

populations (i.e. no geographic structure), zero muta-

tions (an unlikely characteristic of microsatellite loci)

and migration–drift equilibrium. Migration estimated

from coalescent-based and nonequilibrium methods

does not suffer as severely from violation of these

assumptions, and uncertainty in these estimates can be

assessed using confidence intervals. However, the con-

nectivity models generated here were significantly asso-

ciated with all three types of migration estimate,

suggesting that IBR models are robust to the choice of

gene-flow estimator. Alternatively, the populations sam-

pled in this study may not have seriously violated the

assumptions of FST-based migration calculations, lead-

ing to Nm estimates that accurately reflected the varia-

tion in migration between populations. Additionally,

even though Nm is averaged in both directions between

populations, the spatial signal from migration in one

direction may have been strong enough to not be fully

masked in the Nm estimates.

The Bayesian coalescent approach implemented in

Migrate-n may also be influenced by deviation from

equilibrium assumptions. However, the similar success

at IBR models in explaining coalescent-based and non-

equilibrium assignment–based migration estimates sug-

gests that such violations were not severe. White-footed

mouse populations in NYC have been fragmented for

the last few hundred generations. Thus, they are likely

close to migration–drift equilibrium, especially given

the success of equilibrium-based methods at identifying

unique evolutionary clusters (Munshi-South & Khar-

chenko 2010). Migrate-n generally produced more non-

zero estimates of pairwise migration than BayesAss+.

This pattern could be explained by reduced contempo-

rary connectivity because of degradation of natural

areas in NYC. Much of NYC was rapidly urbanized

over a few decades in the early 20th century as devel-

opment tracked the construction of subways, especially

outside lower Manhattan; many of the city’s fragmented

green spaces were gazetted as city parks during the

same period (Caro 1974). Thus, it seems unlikely that

white-footed mouse migration was substantially higher

at some period in the last century than contemporary

migration. Historical maps of canopy cover are not

readily available, but if collated from historical sources,

then the influence of past landcover on longer-term

migration rates could be investigated (Zellmer & Know-

les 2009).
Migrate-n is known to overestimate migration when

divergence times are not substantially larger than NE

within subpopulations. The influence of incomplete

lineage sorting and resultant similarity of the subpopu-

lations cannot be easily disentangled from migration in

these cases, leading to inflated estimates (Edwards &

Beerli 2000). White-footed mouse populations in NYC

are generally large and genetically variable (Munshi-

South & Kharchenko 2010), and thus potentially subject

to this inflation. However, the directionality of migra-

tion rates is preserved despite recent divergence times

and large NE (P. Beerli, personal communication),

which may partially explain why the same IBR models

were significantly associated with migration estimates

from both BayesAss+ and Migrate-n.
Limitations of landscape modelling approach

Although the models used in this study successfully

explained variation in gene flow, there were limitations

of the landscape modelling approach. Beier et al. (2008)

identified sixteen key questions for studies of connectiv-

ity among wild populations, covering aspects of sam-

pling design, analysis of landscape resistance and

implementation of results for conservation projects. The

most important questions for this study are the influ-

ence of the spatial extent of analysis, choice of land-

scape elements and choice of resistance values. The

spatial extent considered in a connectivity study influ-

ences the particular landscape configurations that are

included in the downstream analyses (Anderson et al.

2010). Examining too small of a geographic area can

thus erroneously exclude areas of the landscape that

have a large influence on gene-flow patterns. I pro-

tected against this danger by including large counties

adjacent to NYC in the analysis, and all important path-

ways of connectivity detected by the IED and IBR were

wholly contained within the sampled landscape by a

large margin.

Per cent canopy cover was chosen as the most influ-

ential variable for connectivity because the nonvegetat-

ed landscape in NYC consists almost entirely of

impermeable surfaces, high human population density

and water. Furthermore, extensive trapping records

throughout NYC indicate that white-footed mice occur

in nearly all forested patches but are absent from non-

vegetated areas (Ekernas & Mertes 2007; Puth & Burns

2009; Munshi-South & Kharchenko 2010). Nearly all

parks also have roadways as boundaries, and thus there

was little landscape variation outside a measure of veg-

etation that would have biological meaning for small

mammal movement. Tree canopy cover does have limi-

tations as a measure of vegetation, however, as it may

not account for grassy areas with no shrubs or trees
� 2012 Blackwell Publishing Ltd
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(especially mowed lawns), and does not account for

human management practices underneath the canopy.

Some information may also have been lost by using cat-

egorical bins of per cent canopy cover rather than con-

tinuous percentages, but both the landscape and genetic

data were likely too coarse to resolve more subtle gradi-

ent patterns. Canopy cover from the National Land

Cover Database is calculated at 30-m resolution (Homer

et al. 2004), which is fine-grained enough to capture

habitat use (Stickel 1968) and migration (Anderson &

Meikle 2010) of white-footed mice. Finer-scale data sets,

such as categorical landcover in NYC at 1-m resolution

(Myeong et al. 2001), are increasingly available and

may enhance the explanatory value of resistance models

in future studies.

Choice of resistance values for landscape genetic

analyses will necessarily be subjective when data on

species movements through different landcover ele-

ments are lacking (Beier et al. 2008). High-contrast resis-

tance values (1 vs. 10 000) were used in this study to

identify specific levels of canopy cover that would dra-

matically increase the correlation with gene flow when

included as low-resistance habitat. Landscape resistance

values used here were chosen independently of the

genetic estimates of differentiation or migration. Given

the very high correlation between IBR models and

recent gene flow, one can conclude that the resistance

scenarios were biologically realistic. However, connec-

tivity between urban white-footed mice may decrease

more gradually with canopy cover than was estimated

in this study. Long-term mark–recapture or telemetry

studies over a range of canopy cover would require

considerable effort, but such data would provide valu-

able confirmation before translating landscape genetic

results into the construction of biological corridors,

reforestation or other conservation activities (Beier et al.

2008; Lowe & Allendorf 2010).

Concerns have recently been raised that population-

based, rather than individual-based, landscape genetic

analyses are prone to erroneous inference because of

unrecognized internal structure of populations (Cush-

man & Landguth 2010; Segelbacher et al. 2010). Several

independent analyses that did not assume a priori pop-

ulation structure were conducted to establish the evolu-

tionary uniqueness of the populations analysed here

(Munshi-South & Kharchenko 2010). Individual-based

pairwise analyses may perform poorly if the genetic

data are highly autocorrelated as a result of sampling

multiple individuals from the same (sub)populations.

Given that many estimates of recent migration between

Peromyscus leucopus populations in NYC were indistin-

guishable from zero (Table 3) and most sampling sites

were very small habitat patches (i.e. city parks), such

autocorrelation within populations would likely be a
� 2012 Blackwell Publishing Ltd
problem for individual-based analysis of these data.

Furthermore, migration rates are genetic properties of

populations (Marko & Hart 2011). Individual-based

approaches typically examine pairwise relatedness or

genetic distance between individuals (Coulon et al.

2004), and while related, these statistics are not synony-

mous with gene flow.

Partial Mantel tests have often been used in land-

scape genetic studies to control for IBD between popu-

lations (Storfer et al. 2010) and thus identify

connectivity models that are significant beyond their

correlation with Euclidean distance. Some authors have

criticized these tests for ascribing significance to connec-

tivity metrics that are merely correlated with migration

but not truly influential on their own (Balkenhol et al.

2009b). However, partial Mantel tests can be successful

when alternative models are tested against each other

as was done here to identify the superiority of IBR to

IED ⁄ IBD models (Cushman & Landguth 2010). In gen-

eral, partial Mantel tests perform as well as regression

and approximate Bayesian computation techniques, but

with the caveats that important landscape elements

must strongly influence gene flow and have very differ-

ent permeability to migration than other elements

(Jaquiéry et al. 2011). Partial Mantel tests were powerful

at identifying levels of canopy cover that impeded or

facilitated gene flow in a relatively simple urban land-

scape, although the active interest in developing new

statistical frameworks for landscape genetics may pro-

duce superior approaches in the future.
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Table S1 Euclidean geographic distances (km; above diagonal)

and Slatkin’s linearized FST (below diagonal) estimated

between each pair of populations in the Bronx & Manhattan

(top) and Queens (bottom). Sample sizes (N) appear next to

each population in the first column.

Table S2 95% confidence intervals for recent migration rates

from Table 2 estimated between each pair of populations in

the Bronx & Manhattan (top) and Queens (bottom) using Baye-

sAss+ 1.3. Values above the diagonal are migration rates from

the populations in the horizontal row into the populations in

the vertical column, and values below the diagonal are migra-

tion rates from the populations in the vertical column into the

populations in the horizontal row.

Table S3 Median values and 95% confidence intervals for uni-

directional migration rates, M (m ⁄ l), estimated between each

pair of populations in the Bronx & Manhattan (top) and

Queens (bottom) using Migrate-n 3.2.1. Values are presented

for each of the five independent runs of Migrate-n.

Table S4 Resistance values assigned to 30 · 30 m landscape

cells in each of nine different resistance scenarios based on per-

centage of tree canopy cover.

Table S5 Simple Mantel correlation coefficients, P-values, and

95% confidence intervals calculated for all nine IED and IBR

models using Nm, recent migration rates from BayesAss+, and

migration rates from Migrate-n as measures of gene flow.
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